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Three-dimensional electron-hole superfluidity in a superlattice close to room temperature
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Although there is strong theoretical and experimental evidence for electron-hole superfluidity in separated
sheets of electrons and holes at low T , extending superfluidity to high T is limited by strong two-dimensional
fluctuations and Kosterlitz-Thouless effects. We show this limitation can be overcome using a superlattice of
alternating electron- and hole-doped semiconductor monolayers. The superfluid transition in a three-dimensional
superlattice is not topological, and for strong electron-hole pair coupling, the transition temperature Tc can be
at room temperature. As a quantitative illustration, we show Tc can reach 270 K for a superfluid in a realistic
superlattice of transition metal dichalcogenide monolayers.
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It was predicted half a century ago that bound pairs of
electrons and holes (excitons) in a semiconductor should
quantum condense at low temperatures [1]. To prevent fast
electron-hole (e-h) recombination, the electrons and holes can
be confined in two spatially separated two-dimensional (2D)
layers [2]. At atomically small layer separations, the attractive
Coulomb interaction is strong and e-h binding energies in
excess of 1000 K have been demonstrated [3]. Under ap-
propriate conditions, these indirect excitons are predicted to
form a superfluid condensate with a large energy gap [4,5].
Enhanced tunneling has been observed in e-h double bilayers
[6] at transition temperatures Tc ∼ 1 K. Such enhancement
of tunneling is a strong indication of superfluidity or Bose-
Einstein condensation (BEC) [7]. A dramatic increase in
Tc was recently reported with the observation of enhanced
tunneling up to Tc ∼ 100 K in a double-monolayer transition
metal dichalcogenide (TMD) heterostructure [8,9], in good
agreement with recent predictions [10].

One might reasonably expect that the transition temper-
ature could be further increased up to the limit set by the
large pair binding energies ∼1000 K and the large super-
fluid gaps �300 K. However, any further increase of the
transition temperature in these quasi-2D systems is blocked
by the Mermin-Wagner theorem [11,12]. Thus the maximum
transition temperature is not limited by the e-h binding energy
or superfluid gap, but by a Berezinskii-Kosterlitz-Thouless
(BKT) topological transition [13]. The transition temperature
T BKT is proportional to the carrier density, so it does not in-
crease with coupling strength. Increasing T BKT by increasing
the density is not possible, because strong screening of the e-h
Coulomb interactions at high densities kills the superfluidity
[5,14].
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Here, we overcome the restrictions associated with
Mermin-Wagner and exploit the strong e-h coupling, by
considering superfluidity in a three-dimensional (3D) super-
lattice, consisting of a stack of alternating electron and hole
monolayers. In a 3D system, strong e-h coupling and the asso-
ciated large superfluid gaps can lead to superfluid transitions
at room temperature. We focus specifically on a superlattice
of alternating electron-doped and hole-doped monolayers of
the transition metal dichalcogenides n-WS2 and p-WSe2, but
the approach would work for other systems of stacked e-
h 2D layers. We note there are already many examples of
superlattice-based superconductors [15], including the high-
Tc cuprates [16,17].

Figure 1(a) schematically shows the infinite superlattice
of alternating n- and p-doped monolayers of two different
TMDs, indicated by green and black lines. Within each mono-
layer, a layer of W transition metal atoms is sandwiched
between two layers of S or Se chalcogen atoms. We consider
an AA stacked superlattice of WS2 and WSe2 monolayers,
with the tungsten atoms horizontally aligned, and the chalco-
gen atoms horizontally aligned [3]. For this stacking, the
superlattice has a direct band gap [18]. Electrons and holes
generated by the alternate n and p doping of the monolayers
form bound pairs. The WS2/WSe2 band alignment is type II,
which keeps the electrons and the holes spatially separated
in their monolayers. This ensures long lifetimes for the inter-
layer excitons: in a related double-monolayer MoSe2/WSe2

system, optically generated interlayer excitons with lifetimes
∼1.8 ns have been observed [19]. Since we consider external
doping and since the spins of the lowest-energy electrons and
holes are opposite (see below), the lifetimes in our system
should be an order of magnitude longer than this. Radiative
recombination can become relevant at high temperatures and
densities, but we find, by considering the interlayer coupling
to first order perturbation theory, that the optical transition
matrix element for our 3D system is only 1.3 times larger
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FIG. 1. (a) Schematic illustration of the WS2/WSe2 heterostruc-
ture superlattice of periodicity 2d , of alternating monolayers of the
two different TMDs, one type n doped (green lines) and the other p
doped (black lines). (b) Lowest conduction band and highest valence
band of the superlattice as a function of kz, expressed relative to the
center of the K valley. Blue and red bands are spin-up and spin-
down bands, respectively. For the K ′ valley, the spins are reversed.
(c) Bands predominantly associated with WS2 as a function of k‖.
Inset shows a close-up of the two spin-split WS2 conduction bands,
separated by 2λc = 27 meV. (d) Bands predominantly associated
with WSe2 as a function of k‖.

than that for the corresponding 2D system, thus ensuring
sufficiently long exciton lifetimes.

We use a hybrid continuum tight-binding approach to
determine the band structure of the superlattice. The low-
energy Hamiltonian for the superlattice is given in Eqs. (S1)–
(S3) of the Supplemental Material [20]. The energy spectrum
shown in Figs. 1(b)–1(d) and the corresponding eigenstates
are obtained by numerically solving the eigenvalue equation
of the 4 × 4 Hamiltonian, Eq. (S1). For a given spin and valley
quantum number, the single-particle eigenstate for energy
band β is |ψ�k,β

〉. For the WS2 monolayer conduction band,
we need consider only the lowest conduction band, with spin
down (up) for the K (K ′) valley [see Fig. 1(c)], since the
band above will start to fill only for T � 300 K. We label the
corresponding superlattice band β = 1c, referring to the dom-
inant component in Eq. (S1). Similarly, for the valence band
of the WSe2 monolayer, the very large spin splitting means
that we need consider only the highest valence band, with spin
up (down) for the K (K ′) valley. We label the corresponding
superlattice band β = 2v . Because of the spin polarization in
the valleys, the number of flavors for the electrons and holes
comes only from the valley degeneracy, gv = 2. Figure 1(b)
shows the lowest conduction band and highest valence band
of the WS2/WSe2 heterostructure superlattice as a function
of the perpendicular wave vector component kz, expressed
relative to the center of the K valley. Blue and red bands are
spin-up and spin-down bands, respectively. For the K ′ valley,
the spins are reversed. Figures 1(c) and 1(d) show the bands
associated predominantly with WS2 and WSe2, respectively,
as a function of the in-plane wave vector component k‖, again
relative to the K valley.

We will evaluate the bare Coulomb interaction ma-
trix elements 〈ψ�κ ′,α′ψ�k′,β ′ |V |ψ�κ,αψ�k,β

〉 for e-h scattering be-
tween the |ψ�k,β

〉 eigenstates of the superlattice, with V (r) =

−e2/(4πεrε0r). The dielectric constant εr accounts for static
screening effects of both ions and the filled valence bands. For
bulk WS2 εr = √

εzε‖ = 9.9, and for WSe2 εr = 11.2 [21].
In the limit of no hybridization between the different TMD
types, the system would effectively consist of two decoupled
bulk TMDs with an interlayer distance twice that of their
normal bulk forms. It is shown in Ref. [22] that the dielectric
constant of MoS2 is approximately halved when the interlayer
distance is doubled. For the WS2/WSe2 superlattice, we
therefore take as the value of the dielectric constant for the
heterostructure superlattice εr = 5.5, half of the average of
the two bulk TMDs. While the Keldysh potential [23] applies
for monolayer TMDs, here the nature of the interactions in
〈ψ�κ ′,α′ψ�k′,β ′ |V |ψ�κ,αψ�k,β

〉 is 3D and the average interparticle
distances for the densities we are considering are much larger
than the small distance between layers.

The interaction between electrons and holes from the same
type TMD monolayers is given by [24,25]

V (0)(q‖, qz ) = −e2

4πεrε0NA

2π

q‖

[
sinh(2q‖d )

cosh(2q‖d ) − cos(2qzd )

]

(1)

(for details see discussion in the Supplemental Material [20]).
Equation (1) passes between the correct 2D and 3D limits (see
Fig. S1). In the limit d → ∞, the rightmost term is equal to
unity, and we recover the 2D interaction potential for N layers
of surface area A. In the limit d → 0, a Taylor expansion of
the trigonometric functions transforms the rightmost term to
2q‖/[2d (q2

‖ + q2
z )], thus recovering the 3D interaction poten-

tial for volume (AN2d ).
For electrons and holes from different type TMD monolay-

ers, we find that the interaction is

V (d )(q‖, qz )= −e2

4πεrε0NA

2π

q‖

[
2 sinh(q‖d ) cos(qzd )

cosh(2q‖d ) − cos(2qzd )

]
.

(2)

In the limit d → 0, Eq. (2) reduces to the standard 3D
interaction potential, while the limit d → ∞ introduces the
familiar factor 2e−q‖d .

When evaluating 〈ψ�κ ′,α′ψ�k′,β ′ |V |ψ�κ,αψ�k,β
〉, it suffices to

consider the dominant intraband interactions: α = α′ = 1c

and β = β ′ = 2v because of the large energy band gaps. For
the superfluid calculations, e-h pairs with zero center-of-mass
momentum are required for which the interaction is〈

ψ−�k′,α=1c
ψ�k′,β=2v

∣∣V ∣∣ψ−�k,α=1c
ψ�k,β=2v

〉
= F (H )

�k,α;�k′,β
V (0)(q‖, qz ) + F (0)

�k,α;�k′,β
V (d )(q‖, qz ), (3)

with �q = �k − �k′. We represent 2D vectors in the x-y space
of the monolayer planes as k‖, and vectors in 3D space as
�k ≡ (k‖, kz ). The form factors F (H )

�k,α;�k′,β
and F (0)

�k,α;�k′,β
are given

in Eqs. (S7) of the Supplemental Material [20].
Equation (3) expresses the property that, due to the hy-

bridization between the bands of the different type mono-
layers, there is a small intralayer contribution to the e-h
potential. This is because, while the electrons and holes in the
hybridized bands are mostly in opposite layers, there is a small
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probability they will be in the same layer. At large momentum
exchange q‖, the potential is dominated by 2D interactions
between same type TMDs, V (0)(q‖, qz ), while at small q‖,
the total interaction potential in Eq. (3) is dominated by 3D
interactions between different type TMDs, V (d )(q‖, qz ) (see
Fig. S1 in the Supplemental Material [20]). It is interesting to
note that since pairing by the screened Coulomb attraction is
primarily generated by two-particle scattering processes with
small momentum exchange, pair formation is 3D in character.

Our interacting Hamiltonian for electrons and holes in the
superlattice is

H =
∑

�k

(
ε�k,1c

− μe
)
c†

�k,1c
c�k,1c

+ ( − ε�k,2v
− μh

)
d†

�k,2v

d�k,2v

+
∑
�k�k′

〈
ψ−�k′,1c

ψ�k′,2v

∣∣V ∣∣ψ−�k,1c
ψ�k,2v

〉
c†
−�k′,1c

d†
�k′,2v

d�k,2v
c−�k,1c

.

(4)

We make the standard transformation for the holes in the
valence band to positively charged particles with positive
energies, so the chemical potentials μe and μh in the mono-
layers are both positive. c†

�k,1c
and c�k,1c

(d†
�k,2v

and d�k,2v
) are the

creation and destruction operators for the electrons (holes).
We use a self-consistent mean-field approach to determine

the superfluid gap 	(�k) at zero temperature. To calibrate this
approach, it has been tested against a full diffusion quantum
Monte Carlo calculation for a 2D double-layer system [26].
The results for 	(�k) were found to be in excellent agreement.

In our 3D system, the zero-temperature 	(�k) is the self-
consistent solution of

	(�k) = −
∑

�k′

V RPA(�k, �k′)
	(�k′)
2E�k′

, (5)

where E�k =
√

ξ 2
�k + 	2

�k , with ξ�k = 1
2 (ε�k,1c

− ε�k,2v
) − μ. We

evaluate Eq. (5) at a fixed value of the average chemical poten-
tial μ = 1

2 (μe + μh). The terms in the summation over k′
‖ are

non-negligible only at low energies, but the summation over
k′

z has significant contributions across the full Brillouin zone,
i.e., between ±π/2d . V RPA(�k, �k′) is the self-consistent RPA
screened e-h interaction in the superlattice in the presence
of the superfluid. The screening is due to the polarization of
the electron and hole densities and the superfluid condensate
[5]. The expression for V RPA(�k, �k′) is given by Eq. (S8) in the
Supplemental Material [20].

For given values of the chemical potentials μe and μh, the
3D electron and hole densities are given by

n = gv

AN2d

∑
�k

(v�k )2. (6)

Note even though we set electron and hole densities n equal,
μe 
= μh because of the unequal effective masses.

Figure 2(a) shows the zero-temperature 	max, the max-
imum of the momentum-dependent superfluid gap 	(�k)
[Eq. (5)], as a function of the 3D electron and hole densities
n. For reference the top axis shows an effective 2D carrier
density, defined as n2D = 2dn. At large densities, Coulomb

(a) (b)

FIG. 2. (a) Maximum superfluid gap 	max as a function of equal
electron and hole densities n. Top axis shows effective 2D density
n2D. (b) Condensate fraction C.

screening suppresses the superfluidity. Below an onset den-
sity n0, large gap superfluidity self-consistently weakens the
screening sufficiently for superfluidity to appear. As the den-
sity is further decreased, 	max increases to a maximum value
of 48 meV (560 K), and then decreases. Note that even for
very small values of n, 	max remains in excess of 10 meV
(120 K). These large values of 	max reflect the strong e-h
Coulomb pairing interaction. Figure 2(b) shows the conden-
sate fraction C that determines the density range for the BCS,
BCS-BEC crossover, and BEC regimes [see Eq. (S11) of the
Supplemental Material [20]].

At high densities at weak coupling, the superfluid transition
temperature Tc can be determined from the mean-field BCS
equations, Eqs. (5) and (6), generalized to finite temperatures.

As the density is lowered, we enter the BCS-BEC
crossover regime. With the increased pairing strength, the
chemical potential μ must drop below the Fermi energy EF

to keep the density fixed. This drop incorporates a large part
of the effect of the fluctuations that build up as the crossover
regime is penetrated. Although within the crossover regime
the Tc determined from the generalized Eqs. (5) and (6)
using the self-consistent μ starts to overestimate the actual
transition temperature, this overestimate is expected to be
�20% across the full crossover regime [27,28]. For exam-
ple, for ultracold fermions, the simplest non-self-consistent
t-matrix approach overestimates the Tc obtained by quantum
Monte Carlo (QMC) simulations by only ∼20% at unitarity
in the crossover regime (Fig. 3 of Ref. [28]). In this t-matrix
approach, the sole ingredient entering the Tc calculation is the
renormalization of the chemical potential.

In the self-consistent screening, we retain the superfluid
gap at zero T , since the pseudogap arising from the pair
fluctuations should remain of the order of 	(T=0) in the
intermediate coupling regime [29], and so to a large extent the
low-lying excited states will continue to be excluded from the
screening excitations, suppressing the detrimental Coulomb
screening. In this way we take into account a major part of
the fluctuation effects that renormalize Tc to lower values, by
incorporating a large part of the fluctuations through the re-
duction of the chemical potential and through the development
of the pseudogap.

This effective mean-field approach to determine the super-
fluid Tc is robust against fluctuation-driven suppression of Tc
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FIG. 3. Superfluid transition temperature Tc as a function of n,
the equal electron and hole density in the superlattice. Red line: Tc de-
termined in the BCS and BCS-BEC crossover regimes using Eqs. (5)
and (6) generalized to finite temperatures. Blue line: Tc determined in
the deep BEC regime using Eq. (S12) of the Supplemental Material
[20]. Green line: interpolation.

arising from the strong anisotropy of the superlattice [30].
Reference [30] evaluates Tc across the BCS-BEC crossover
regime for an anisotropic layered superfluid Fermi gas in
an optical lattice, and includes Gaussian fluctuations beyond
mean field. These fluctuations are expected to incorporate
most of the suppression of Tc due to low-dimensional fluctu-
ations in the superfluid when the dimensionality is lowered
from 3D to 2D [31]. Figure 2 in Ref. [30] shows Tc in
the BCS-BEC crossover regime for different values of the
single-particle hopping anisotropy. It can be seen that near
the maximum Tc, the regime of interest to us, a factor 10
in the anisotropy reduces Tc by less than 15%. The hopping
anisotropy in our superlattice is of the order of ten, so we can
conclude that the fluctuations associated with anisotropy have
little effect on the Tc calculated within our effective mean-field
approach described above, for the density range from the onset
density to the crossover regime where our Tc passes through its
maximum. It is interesting to note that we find the anisotropy
of the superfluid near the optimal density is much smaller than
the anisotropic ratio of the superlattice, consistent with the
findings in Ref. [30].

In the deep BEC regime at low densities (C > 0.9), this
method for determining Tc becomes unreliable, primarily
because the pseudogap is replaced by a real gap of the
order of the pair binding energy. In the deep BEC, we can
approximate the e-h pairs as pointlike bosons, so we can use
the Tc for BEC of noninteracting bosons [Eq. (S12) of the
Supplemental Material [20]]. The Tc thus obtained is known
to underestimate the actual Tc for BEC as determined by QMC
[32]. Finally, in the density range from the upper boundary of
the BEC regime to the start of the deep BEC, we use a smooth
interpolation of Tc between the high- and low-density results.

Figure 3 shows the resulting superfluid transition temper-
ature in the superlattice. In the deep-BEC regime, Tc (blue
curve) can approach 100 K, many orders of magnitude larger
than the BEC transition temperatures found in ultracold-atom
systems [33–35]. These BEC transition temperatures are so
much larger because the effective electron and hole masses
are tiny compared to atomic masses, and because our densities
are several orders of magnitude larger than in ultracold-atom
systems. Increasing the density causes Tc to rapidly rise,
pushing it to a maximum in the BCS-BEC crossover regime
(red curve) very close to room temperature, Tc = 270 K—
conveniently accessible in a domestic refrigerator.

We do not expect that disorder or small density imbalance
between layers would significantly affect our results for the
following reasons. The effect of charged disorder on electron-
hole superfluidity is similar to that of magnetic impurities in a
superconductor, and for this reason closely related to the effect
of density imbalance. Our superfluid results are confined to
the BEC and BCS-BEC crossover regimes, and Ref. [36]
showed for electrons and holes in GaAs double quantum
wells, that in these regimes the superfluidity is not very
sensitive to density imbalances even of 10%. Furthermore,
the recent experimental observation of condensation at high
Tc in electron-hole double TMD monolayers [8] is additional
evidence that the effect of disorder will be weak, particularly
since these observations are consistent with our theoretical
predictions for the same TMD system which were calculated
with no disorder [10]. The effect of disorder on Tc is not
expected to be stronger in 3D than in 2D.

While for convenience our calculations use the realistic
band structure of an infinite superlattice, our conclusions re-
main valid for corresponding finite superlattices consisting of
more than a few monolayers [37]. To detect the superfluidity,
a neutral supercurrent parallel to the superlattice layers that is
uniform in the perpendicular direction, could be set up in a
counterflow configuration by electrically contacting together
the n-doped layers, and similarly with the p-doped layers.
Alternatively, a capacitance spectroscopy measurement [38]
could detect the drop in density of states for the superfluid
state relative to the normal state. The onset of superfluidity
will be characterized by a jump in the inverse of the total
capacitance across the sample [39], and then as the density
is decreased, this will monotonically increase.

Our results open the way to generating 3D e-h superfluidity
at room temperature in this and related superlattices.
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3Supernano Laboratory, School of Pharmacy, Università di Camerino, 62032 Camerino (MC), Italy
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S1. SUPERLATTICE HAMILTONIAN

We start with a hybrid continuum-tight binding approach
to determine the band structure of the superlattice. The low-
energy single-particle Hamiltonian for this superlattice, valid
in the K and K ′ valleys, can be written as,

H~k,s,τ =

(
H1
s,τ (kx, ky) T (kz)
T †(kz) H2

s,τ (kx, ky) + δbI2

)
. (S1)

The indices are s = ±1 for spin, and τ = +1 and −1 for
valley K and K ′, respectively. We will represent 2D vectors
in the x-y space of the monolayer planes as k‖, and vectors in
3D space as ~k ≡ (k‖, kz), with the z-direction perpendicular
to the monolayers. The k‖ momentum vectors are expressed
relative to the center of the K or K ′ valley.

The Hamiltonian for the type ` = 1 (WS2) or type ` = 2
(WSe2) monolayer can be expressed for low energies in a
Bloch basis, one for each type TMD monolayer, comprising
the transition metal atomic orbitals for the lowest conduction
band, d0, and the highest valence band, d±2 (the plus and mi-
nus correspond to the K and K ′ valley, respectively)[S1],

H`
s,τ (kx, ky) =

(
Eg

`

2 + λc,`sτ a`t`(τkx − iky)

a`t`(τkx + iky) −E
g
`

2 + λv,`sτ

)
.

(S2)
a` is the lattice constant of the type ` monolayer, t` the in-
tralayer hopping parameter, and Eg` the band gap. λc,` and
λv,` are the spin-orbit coupling strengths in the conduction
and valence bands. The values of these parameters are given
in Table S1. These are determined by the properties of the sep-
arate TMD layers because the low-energy states are predomi-
nantly located on the transition metal atoms, and so are almost
unaffected by the interlayer coupling which occurs mostly
between the chalcogen atoms. In Eq. (S1), a bias potential
δb = 0.412 eV between the two different TMDs, ensures that
the band alignment agrees with Ref. S2. This bias potential
is expected to remain unchanged when going from a 2D dou-
ble TMD monolayer system to the 3D TMD superlattice (see
Ref. S3). Furthermore, it does not affect the transition tem-
perature for single-band superfluidity provided the band align-
ment remains type II, since it only leads to a relative shift of
the electron-hole energy band.

In Eq. (S1), T (kz) is the interlayer part of the Hamiltonian,

T (kz) =

(
2tc cos(kzd) 0

0 2tv cos(kzd)

)
, (S3)

a (nm) t (eV) Eg (eV) 2λc (eV) 2λv (eV) 2tv (eV)

WS2 0.32 1.37 1.79 0.027 0.43 0.109
WSe2 0.33 1.19 1.60 0.038 0.46 0.134

Table S1. Parameters for WS2 and WSe2: lattice constant[S1]
(a), hopping parameter[S1] (t), band gap[S1] (Eg), spin split-
ting of conduction band[S5] (2λc) and valence band[S6] (2λv),
interlayer hopping parameter[S7] (tv).

where d = 0.65 nm is the distance between monolayers. tc
and tv are the interlayer hopping parameters between the con-
duction band d0-states and the valence band d±2-states of the
opposite monolayers.

For AA stacking, the interlayer nearest neighbors have
the same in-plane coordinates, so the interlayer hopping be-
tween the d0-states does not vanish. The coupling strength
between the d±2-states is almost identical for AA and AB
stacking[S4]. From bilayer MoS2 we know that the coupling
strength between the d0-states is ∼ 1

7 of the coupling strength
between the d±2-states[S4]. Since the coupling strength is
determined only by the type of orbitals and the spatial separa-
tion, which is the same for all TMDs, we will assume tc = 1

7 tv
as a general relation. For TMD heterostructures, the effec-
tive hopping parameter is assumed to be given by the average
value of the hopping parameters of each of the two TMDs, in
general a good approximation[S4]. For our WS2/WSe2 super-
lattice, the transition metal atoms of the TMD monolayers are
the same, making this an even better approximation.

S2. E-H INTERACTIONS: EFFECTS OF SUPERLATTICE
GEOMETRY AND HYBRIDIZATION

The energy spectrum (Fig. 1 in the manuscript) and eigen-
states are obtained by numerically solving the eigenvalue
equation of the 4 × 4 Hamiltonian Eq. (S1). For given spin
and valley quantum numbers, the single-particle eigenstate for
energy band β is |ψ~k,β〉, which can be written as the four-
component vector,

|ψ~k,β〉 =


C
~k
1c,β
|Φ~k,`=1〉

C
~k
1v,β
|Φ~k,`=1〉

C
~k
2c,β
|Φ~k,`=2〉

C
~k
2v,β
|Φ~k,`=2〉

 . (S4)
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Figure S1. (Color online) Solid blue curve: Intralayer interaction
potential V (0)(q‖, qz = 0) (Eq. (1) in the main manuscript) as a
function of q‖. Solid red curve: interlayer interaction potential
V (d)(q‖, qz = 0) (Eq. (2) in the main manuscript). Dashed blue
curve: 2D intralayer interaction potential (∝ 1/q‖). Dashed red
curve: 2D interlayer interaction potential (∝ 2e−q‖d/q‖). Dotted
purple curve: 3D interaction potential (∝ 1/q2‖).

The different pseudospin states |Φ~k,`〉 are defined below. The

weighting coefficients C~ki,β include both the effects of inter-
layer hopping generated by T (kz), and the hybridization of
the conduction and valence bands. We may assume the con-
tinuum approximation for the dispersion of the bands in the
parallel direction at low energies, but in the z-direction, with
its small band widths, all kz-values in the first Brillouin zone
must be considered.

Since the influence of the interlayer hopping on the energy
bands is small because of the energy mismatch between the
bands of the different TMDs, we can write,

〈~r |Φ~k,`〉=
1√
NA

eik‖·r‖

N/2∑
j=−N/2

δ1/2(z−j2d−z`d)ei(2j+z`)kzd ,

(S5)

with N the number of TMD heterostructures and z`=1 = 0
(z`=2 = 1) representing the relative position in the z-direction
of each WS2 (WSe2) monolayer in the superlattice.

The matrix element of the interaction potential between
these states is given by

〈Φ~κ′,`′2
Φ~k′,`′1

|V |Φ~κ,`2Φ~k,`1〉 =

− δ`1,l′1δ`2,l′2δ~k+~κ,~k′+~κ′

[
e2

4πεrε0NA
2π
q‖

]
×

N∑
w=−N

ei(2w−z`1+z`2 )qzde−|2w−z`1+z`2 |q‖d , (S6)

with ~q = ~k − ~k′ = ~κ′ − ~κ. The factor δ`1,`′1δ`2,`′2 confines
the electrons and holes to their original monolayers when they
scatter. For N → ∞ the summation leads to V (0), Eq. (1) in
the manuscript for `1 = `2, i.e. between same type TMD
monolayers, and to V (d), Eq. (2) for `1 6= `2, i.e. between
different type TMD monolayers. These interaction potentials
are shown in Fig. S1.

Evaluating the interaction potential between the eigenstates
of Eq. (S4) leads to Eq. (3) in the manuscript. The form fac-
tors appearing in this equation are given by,

F
(0)
~k,α;~k′,β

= C1,α~k,~k′C
2,β
~k,~k′

+ C2,α~k,~k′C
1,β
~k,~k′

,

F
(H)
~k,α;~k′,β

= C1,α~k,~k′C
1,β
~k,~k′

+ C2,α~k,~k′C
2,β
~k,~k′

,
(S7)

with C`,α~k,~k′ ≡
∑
j=c,v(C

~k′

`j ,α
)?C

~k
`j ,α

. From Eq. (S7), we can

see for α = 1c and β = 2v , that F (0)
~k,α;~k′,β

will be large, and

that the hybridized F (H)
~k,α;~k′,β

will be small.

S3. RPA SCREENING IN THE SUPERLATTICE IN THE PRESENCE OF THE SUPERFLUID

V RPA(~k,~k′), appearing in Eq. (5) in the manuscript, is the self-consistent RPA screened e-h interaction in the superlattice
in the presence of the superfluid. The screening is due to the polarization of the electron and hole densities and the superfluid
condensate[S8]. It is given by,

V RPA(~k,~k′) =
F

(0)
~k,α=1c;~k′,β=2v

V (d)(~q) + F
(H)
~k,α=1c;~k′,β=2v

V (0)(~q)

1 + 2V (0)(~q)
[
Π

(0)
n (~q) + Π

(H)
a (~q)

]
+ 2V (d)(~q)

[
Π

(H)
n (~q) + Π

(0)
a (~q)

] , (S8)
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with ~q = ~k − ~k′. The presence of the superfluid strongly affects the Π polarization functions[S8] in Eq. (S8), which for the
superlattice are defined as,

Π(λ)
n (~q) = −gv

∑
~k

F
(λ)
~k+~q,α=1c;~k,β=2v

E~k+~q + E~k

{(
u~k+~qv~k

)2
+
(
u~kv~k+~q

)2}
(S9)

Π(λ)
a (~q) = gv

∑
~k

F
(λ)
~k+~q,α=1c;~k,β=2v

E~k+~q + E~k

{
2u~k+~qv~ku~kv~k+~q

}
, (S10)

where (λ) = (0), (H) (recall Eq. (S7)). The Bogoliubov amplitudes are u2~k = 1
2

(
1 + ξ~k/E~k

)
and v2~k = 1

2

(
1− ξ~k/E~k

)
.

S4. CONDENSATE FRACTION

The condensate fraction,

C =

∑
~k(u~kv~k)2∑
~k(v~k)2

, (S11)

measures the fraction of carriers in the condensate[S9–S12].
C characterizes the different regimes of pairing in ultra-cold
fermions[S13], and we apply the same criterion: in the BCS
regime C < 0.2, with only a small fraction of the electrons and
holes close to the Fermi surface forming pairs and condensing;
0.2 < C < 0.8 characterizes the BCS-BEC crossover regime;
in the BEC regime C > 0.8, and most carriers have formed

bosonic pairs and condensed; in the deep BEC regime, C >
0.9, the condensed bosonic pairs are compact and very weakly
interacting, and there are almost no free carriers.

S5. Tc FOR BEC OF NON-INTERACTING BOSONS

The Tc for Bose-Einstein Condensation of non-interacting
bosons is determined by inverting the equation[S14],

n =
2

AN2d

∑
~k

1

e(ε~k,1c
−ε~k,2v

−ε~0,1c+ε~0,2v )/(kBTc) − 1
.

(S12)
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