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We investigate interparticle correlations for two layers of charge-carrier liquid trapped in adjacent
wells of a gallium arsenide heterostructure. We determine in the absence of appreciable tunneling
the static polarizability, the pair correlation functions, and the local-6eld corrections both within a
layer and between the layers. The liquid ground state has points of instability to states that are
inhomogeneous in the density. An important result is that, in contrast with electron-electron layers,
for electron-hole layers the interlayer correlations favor the formation of the inhomogeneous states.
The pair correlation functions display unusual behavior near the points of instability.

I. INTRQDUCTION

Recently, there has been considerable interest in sys-
tems consisting of two parallel layers of electron liquid.
These can be fabricated by trapping electrons in adja-
cent quantum wells of a semiconductor heterostructure.
Two layer systems have some interesting properties not
the least of which is that the Coulomb coupling of the
carriers in one layer to the carriers in the other make
the layers act as compressible polarizable backgrounds
for each other. A lot of work has been done in the pres-
ence of a magnetic field but we concentrate here on the
zero-magnetic-field case.

There have been many studies of these systems within
the random-phase approximation (RPA). The RPA di-
electric function, electronic properties, and the collective
excitations have been calculated for two layers 7 and
also for superlattice systems. In the study of light
scattering, the RPA density-density correlations have
been calculated and optical properties investigated.
We have discussed corrections to the RPA for two layer
systems ' and the corrections have also been inves-
tigated by I u and Golden, ' by Kalman, Ren, and
Golden, by Kalman and Golden, and by Zheng and
Mac Donald. 2

The presence of additional mobile charge in the sec-

ond layer accentuates correlation effects compared with

the case of a single layer. In Ref. 17 we showed that at
relatively high densities the corrections to the RPA could

change the ground state for two electron layers from the

homogeneous liquid to inhomogeneous states consisting
of a charge density wave or a signer crystal in each layer.

Here we are particularly interested in the efFect of in-

terlayer correlations on the static properties of two layer

systems. The interlayer correlations take into account the
effect a charge carrier in one layer has on the charge den-

sity distribution in the second, layer. Correlations within

a layer and perpendicular to the layer are quite different

in nature, first because the carriers can only move parallel

to the layer and. second, because in the absence of tun-

neling there is only exchange parallel to the layer. The
correlations between layers become more pronounced the
smaller the separation between the layers becomes. The
length scale for this is given by the layer spacing for which

Coulomb interactions between layers are comparable in

strength to interactions within a layer. The increase in

correlation strength does not continue indefinitely since if
the layers are too close together the carrier envelope func-

tions from opposite layers overlap, producing appreciable
tunneling between layers which in turn would reduce the
interlayer correlations.

We will restrict ourselves to quite large layer spacings
for which the intralayer correlations are much larger than
the interlayer correlations and for which there is negligi-

ble tunneling between the layers. In gallium arsenide the
envelope functions in quantum wells are at least 10 nm in

width, so to avoid overlap we restrict the layer spacings
a & 30nm.

Suppose we start with two electron layers each at a
density r, & 37. If the layers are far apart interactions
between electrons in opposite layers will be small and

the interlayer correlations negligible. Nevertheless for

r, & 37 there are such strong correlations within the
layers that the electrons will form a Wigner crystal in

each layer2s no matter how widely they are separated. If
we now decrease the layer spacing, the interlayer corre-

lation effects will increase. What we find is that small

correlations between layers can sustain the effect of the

strong correlations within a layer resulting in the system
remaining in an inhomogeneous ground state for densities

higher than r, = 37.
We will primarily be concerned here with the proper-

ties of a layer of holes coupled to a layer of electrons,
although we do present some results for electron-electron
layers. The attractive interactions between electrons and
holes have a larger effect than the repulsive interactions
acting between electron-electron layers. We calculate the

pair correlation functions and the local-field corrections
for carriers in the same layer and in different layers. We

also look at the effect that interlayer correlations have on

0163-1829/94/50(15}/11002(6)/$06. 00 50 Oc1994 The American Physical Society



50 CORRELATIONS IN COUPLED LAYERS OP ELECTRONS AND HOLES 11 003

the positions of points of instability in the liquid ground

state.
Lozovik and Yudson24 considered an electron-hole

layer system for configurations where the interlayer cor-
relations dominate, that is in the opposite extreme to
ours. If the interlayer correlations are very strong the
electrons and holes will tend to form excitonic bound

pairs which interact only weakly. They predict a weakly

interacting exciton gas with superfiuidity resulting &om
Bose-Einstein condensation of the excitons. This result

applies for small spacings. When, as in our case, the
layer spacing exceeds the effective Bohr radius the ex-

citonic binding energy decreases exponentially with the
square of the layer spacing. For gallium arsenide the ef-

fective Bohr radius is az ——9.8 nm, which is much smaller
than our minimum layer spacing so excitonic formation
is unlikely.

Two layers of holes would have similar properties to
two electron layers at the same r, . However, for gallium
arsenide, because of the larger effective mass of holes,
the same value of r, corresponds to a much higher hole
density than electron density. An areal density of 2 x 10io

cm i corresponds for example to r, 3 for electrons
but to r, 19 for holes. While at r, = 3 the system is

relatively weakly correlated, for r, = 19 the correlations
are strong.

In Sec. II, we describe the method for calculating the
static response and pair correlation functions for the two

layer system. Section III discusses the results and in
Sec. IV we make some concluding remarks.

II. THEORY

We consider a quantum well structure which produces
two spatially separated, parallel layers of charge carri-
ers. These are free to move in the z-y plane parallel to
the layer but are confined in the z direction within lay-
ers of finite thickness. Each layer has only one species
of charge carrier (electrons or holes). We assume that
only one subband in each quantum well is occupied and
that the wave functions &om different wells do not ap-
preciably overlap. Although we confine discussion to the
two layer case, extension to an arbitrary number of lay-
ers or to a finite number of occupied subbands is quite
straightforward.

The single-particle wave functions can be written

where vq = [2ne /Qeo] is the Coulomb interaction in-

side the semiconductor and eo is the background di-

electric constant of the semiconductor. V'"'(R, z;(d) —:
V'"'(r, u) is the time Fourier transform of the external
potential.

The instantaneous pair correlation functions g~te(R)
give the probability of finding a carrier at a parallel dis-

tance R in layer l' when there is a carrier at the origin in

layer l. These functions can be obtained &om the Fourier
transform of the static structure factor S~~z (Q),

g«(R) =1+ 1 Q,.&z ll' ll' .
gnini (2vr)'

(4)

b«z is the Kronecker delta and n& is the equilibrium den-

sity in the lth layer.
The structure factor is related to pi& (Q, v), the density

response in layer l to a unit stimulus in layer l', through
the fiuctuation-dissipation theorem,

1 h
Imgii (Q, u))du).

AJAR& X p

By definition y~i (Q, (d)) gives the overall density re-

sponse of the layers»i(Q, u) to an external potential
Vext (Q ~)

b'ni(Q, u)) = —) yg (Q, u))V, , (Q, ~). (6)

y~ie(Q, u) takes into account both the direct effect of
VP"'(Q, u) and the effect of interactions induced by
changes in electron density in the other layer.

Within the static local-field approach2s»t(Q, u) can
be written

»i(Q )=-~~(Q ) Vi"'(Q ~)

Both the Coulomb interaction between carriers in lay-

ers l and l', Vi~ (Q), and any external potential acting

on the carriers in layer l, Vi'" (Q, u), contain the form

factors ~(((z)]',

Vj, , (Q) = ve f dz f dz e ~.-*'~~~~((z)~~* ~(e (z')(*,

VP (Q, tv) =fdRf dz e 'I'
~(~(z)~~

V' (R, z; )tv,

e~, (R, z) = e*~ "(,(z),
A

where A is the area of the sample and l labels the layer.
Capitalized vectors such as R or K' lie in the z-y plane
parallel to the layers.

The envelope function (i(z) is calculated &om the one-
dimensional Schrodinger equation,

d + V(z) (i(z) = Ei(i(z). (2)

The potential V(z) includes Hartree and correlation
terms in the spirit of the local density functional ap-
proach (see, e.g. , Ref. 25).

+):[1-& (Q)]V (Q)~ (Q, ),
l' gl

where the static local fields Gii (Q) modify the effective
interaction between particles in layers l and l'. y&(Q, (d)

is the response function for a single isolated layer l, which
we write in the form,

(p)

xi(Q, ~) = &&' (Q, ~)
(8)1+V«(Q) [1 —~«(Q)] X,"(Q,~)

where yI )(Q, u) is the Lindhard function for the two-
dimensional system.

Combining Eqs. (6) and (7) we can write
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1
x (Q )

+[1 —G«(Q)]V«(Q)(1 —b«) (9)

Inverting this matrix gives us yii (Q, ui).
We now turn to the problem of determining the local

fields Gii (Q). The two layer system can be formally
treated as a two component system with interactions
given by Vii (Q).

If the correlations were not too large the local fields
could be calculated using the method of Singwi, Tosi,
Land, and Sjolander (STLS)2~ extended to the case of a
two component plasma. 2s Central to the STLS approach
is an ansatz that the density-density correlation func-
tion can be approximated by the product of two densi-
ties times the static equilibrium pair correlation function
(see, e.g. , Ref. 26),

(bni (R, t) bniI (R, t)) = bni(R, t) giii (R —R')
xbni (R', t). (10)

The symbol
"

distinguishes operators from expectation
values. Using Eqs. (4) and (10) an expression can be
obtained for the local field,

1 dK Q K Vii(K)
gnini (2z.)

' Q' Vii (Q)
x [Sii (iQ —Ki) —big ].

Gii (Q) =—

Equations (5), (9), and (11) form a closed set of equa-
tions for the Gii (Q). In the STLS approach Eq. (8) is

substituted into Eq. (9), and Eqs. (5), (9) and (11) are
then solved self-consistently for the local fields G«(Q).

We are interested in relatively low densities, r, 5,
where the results of numerical simulations show that in
the single layer case the correlations have become too
strong for the STLS pair correlation functions to be
accurate. Thus we cannot directly use the STLS ap-
proach. However as we have noted, even though correla-
tions within each layer might be strong, it does not nec-

essarily follow that correlations between layers must like-

wise be strong. The interlayer correlations only become
strong when the layers are close together. Provided the
layers are not too close, the STLS approach can still be
used to determine the correlations between layers, even

though a different approach must be introduced to de-

termine the interlayer correlations. For relatively small
interlayer correlations the local field Gii(Q) within each
layer can be determined from the numerical simulation
data for a single layer. 23 The size of the interlayer corre-
lations can be checked at the end of the calculation for
consistency.

The method we use is as follows. %e start &om the
results of numerical simulations for the pair correlation
function for a single layer g(R), or equivalently the static
structure factor S(Q).zs By assuming the parametrized
form for yi (Q, id) given in Eq. (8), the fluctuation-
dissipation theorem for a single layer can then be used
to numerically deduce for every value of Q an intralayer
local field Gii(Q). i As discussed above, provided the in-

terlayer correlations are not too large we may neglect any
feedback of Gii (Q) on Gii(Q) and use Gii(Q) as a fixed

input to solve Eqs. (5), (9), and (11) self-consistently for
the interlayer local field Gii (Q), with t g t'.

III. RESULTS AND DISCUSSION
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FIG. 1. The in-phase static polarizability x+(Q) for a
layer of electrons separated from a layer of holes by a distance
a close to a point of instability either to a charge density wave

(r, = 5) or to a coupled Wigner crystal (r, = 20). Solid line:

a = 1.0la, broken line: a = 1.08a„and chain line: a = 2a, .
The critical spacing for r, = 5 is a, = 2.21a& and for r, = 20
it is a, —13.8a&.

The existence of points of instability in the liquid phase
significantly affects the behavior of the functions gii (R)
and Gii (Q) in regions of the liquid phase space close to
the instability points. The instabilities themselves show
up as divergences in the matrix elements of the static
polarizability matrix yii (Q). When the densities and
effective masses in the two layers are the same the diago-
nalized elements are simply y~(Q) = yii(Q) 6 gi2(Q),
the y+(Q) giving the density response for in-phase ex-
ternal stimuli and the y (Q) the response for stimuli
which are m out of phase. For a layer of holes coupled
to a layer of electrons the most energetically favorable
inhomogeneous state has the same density modulations
in both layers so the in-phase polarizability y+(Q) is the
diagonalized matrix element which diverges. Similarly,
for two layers of electrons the divergent element will be
the y (Q).

As an example of this effect, Fig. 1 shows the g+(Q)
for coupled electron-hole layers as a function of layer sep-
aration a. For r, = 5, the critical spacing a, = 2.21aB
and the peak in y+(Q) is centered at (~Q~/kF) = 2. For
r, = 20 the critical spacing a, = 13.8az and y+(Q) has
two peaks, one centered at (~Q~/kF) —2, the other at
(~Q~/kF) = 2.5. r, = 20 is a crossover density in the
sense that for r, & 20 the [(~Q~/kF) = 2.5] peak is the
one which actually diverges while for r, 20 it is the

[( Q~/kF) = 2] peak which diverges.
Since our formalism only applies for liquids we can-

not use it to determine the nature of the state beyond a
point of instability. However, a value (~Q~/kF) = 2.5 is
so close to the reciprocal lattice vector for a triangular
Wigner lattice, (~G~/kF) = 2.6, that we can speculate for
r, & 20 the inhomogeneous state beyond the instability
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FIG. 2. Points of instability of the liquid for the electron-
hole coupled layer system. Instability is to a charge density
wave (open symbols) or to a coupled Wigner crystal (shaded
symbols). The circles are our final results including the effect
of correlations between the layers. The squares show the cor-
responding results when interlayer correlations are neglected.
The lines are a guide for the eye.

is probably a Wigner crystal in each layer. Because the
instability appears in y+(Q) the coupled lattices would

match across the interface. For r, + 20 the instability oc-
curs for (~Q[/kz) 2 and the most likely inhomogeneous
state would be a charge density wave of wave number [Q~.

We should note that the points of instability do not
necessarily correspond to any actual second-order phase
transition. A first-order transition in the liquid to an
inhomogeneous state could occur before the instabil-

ity point, in which case there would be no subsequent
second-order phase transition.

Figure 2 gives an overview of the position of the in-

stabilities as a function of both the carrier density and
the layer spacing. The points of instability are shown for
electron-hole coupled layers. If for fixed r, we consider
a decrease in the spacing between the layers there will

be a corresponding increase in the relative importance of
the potential energy associated with interactions between
layers. This increase in the potential energy contribution
eventually leads to the instability in y+(Q). For smaller

values of r, the instability occurs for (~Q[/k~) —2 and
we have labeled it a charge density wave. At larger val-
ues of r, the instability occurs for (~Q~/kz) —2.5 and
we have identified it with a coupled Wigner crystal. For
the electron-hole system the coupled Wigner crystal in-
stability occurs at densities as high as r, = 15 but for
the electron-electron system the coupled Wigner crystal
instability only occurs for r, & 30s .

We have also determined the position of the points
of instability when the correlations between the layers
are neglected, which is equivalent to replacing the inter-
layer local field Gii (Q) by zero. Figure 2 shows that
the positions of the instability points are not greatly af-
fected although the correlations do noticeably increase
the values of the critical spacing. The main effect of in-
cluding the interlayer correlations is to favor the coupled
Wigner crystal over charge density waves. (It is inter-
esting to note that for electron-electron layers the corre-

lations work in the opposite direction. The correlations
decrease the critical spacing and tend to favor charge
density waves. )

We now turn to the pair correlation functions. For the
two layer system there are two functions, the pair correla-
tion function within a layer gii (R) and the intralayer pair
correlation function for carriers in opposite layers gi2 (R).
As with the single layer, the correlations must satisfy per-
fect screening sum rules although these take a slightly
different form for two layer systems since for correlations
between layers there is no "self" electron. While within a
layer the form is the familiar d R[1 —gii(R)] = 1, for
the interlayer pair correlation unction the perfect screen-
ing sum rule is null, that is f d R[1 —gi2(R)] = 0.

The overall shape of gii(R) is largely determined by
the same considerations as for the pair correlation func-
tion of a single layer (see Ref. 23). For r, & 10 the gii (R)
is almost zero f'rom R = 0 out to a value [R~ = R, which
can be comparable to the average interparticle spacing
ro. The appearance of gii(R) is not unlike that for a
system with a hard core of radius 8,. For ~R~ ) R, there
is an increase in gii(R) to a peak which is greater than
unity and centered near ~R~ = ro For st.ill larger values
of R the gii(R) approaches unity in a weak oscillatory
fashion. The peak in gii(R) is a consequence of the con-
servation of particle number. The greater the fraction of
available volume from which electrons are excluded, the
higher the peak must be.

In Fig. 3 the intralayer gii(R) and the interlayer
gi2(R) are shown for coupled electron-hole layers at the
two densities r, = 5 and 20. Layer separations a ) 2a,
are not shown since both gii(R) and gi2(R) behave as
would be expected for weak coupling between layers.
Even for a = 2a, the gii(R) is similar to the pair corre-
lation function for a single layer at the same density and
gi2(R) is close to unity for all R.

By a = 1.08a, the value of gi2(R) at R = 0 exceeds
2 and there is an interesting compensatory increase in

gii(R) near the origin. The gii(R) initially decreases in
value as R moves away from the origin, passing through
a minimum at ~R[ = 0.8ro and then turning up towards
the asymptotic value of unity. The cause of the negative
gradient at small R is an attractive region which develops
in the hole layer at the point immediately opposite any
electron in the first layer, and vice versa The attra. ctive
region compensates to some extent the repulsive effect of
the electron within its own layer and this permits some
of the electrons in the first layer to flow back towards
R=O.

It is not only the small R = 0 behavior of the two
functions which compensate each other. The oscillations
for [R[ ) ro are also in step due to the attraction be-
tween electron and hole density fluctuations. In Fig. 3
the period of the oscillations approximately agrees with
the wave number of a charge density wave for r, = 5 and
with the reciprocal lattice vector of a Wigner crystal for
r, =20.

Analogous effects occur for two coupled layers of elec-
trons. Figure 4 shows gii(R) and gi2(R) for two electron
layers at r, = 20. The gi2(R) is depressed for small R
because electrons &om different layers do not want to sit
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directly opposite each other. This again has the effect
of generating an attractive region opposite an electron
so that once more gqq(R) initially decreases as R moves
away &om zero.

In Fig. 5 we compare the intralayer pair correlation
function gqq(R) obtained &om our calculation with the
gqq(R) determined using the STLS approximation. We
have taken r, = 5 and a layer spacing close to a, . Since
the system is strongly interacting it is to be expected that
the gqq(R) calculated within the STLS approximation
will differ significantly &om the gqq(R) in the present
calculation.

Figure 5 also compares our gzz(R) with the pair cor-
relation function for a single layer g(R) taken from nu-

merical simulation data. 2s The comparison highlights the
significant effect the presence of a second layer has on the
small R behavior of gzq(R). In proximity to the instabil-
ity point the large R behavior of the two functions also
differs, with the gqq(R) displaying oscillations of larger
amplitude.

We have also determined the intralayer local field

Gq2(Q). This modifies the effective interaction between
carriers in the two layers replacing the bare Coulomb in-
teraction V&2(Q) by an effective interaction V&2(Q)[1—
Gq2(Q)]. Figure 6 shows the Gq2(Q) both for coupled
electron-hole layers and coupled electron-electron layers.
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FIG. 4. Pair correlation functions for the system of two
electron layers at r, = 20 close to the instability to the charge
density wave. The instability occurs at a critical spacing of
a 7.3a&. Solid line: a = 1.01a„broken line: a = 1.08a,
and chain line: a = 2a, .

FIG. 5. Intralayer pair correlation function calculated
within difFerent approximations for the electron-hole coupled
layer system. Also shown are results for a single layer. r, = 5
in all cases. Solid line: our approach for a = 1.01a„broken
line STLS for a = 1.01a„where a, is the critical spacing.
Chain line: Monte Carlo results for a single layer. Dotted
line: STLS for the single layer.
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IV. CONCLUSIONS
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The density is r, = 20 and the layer spacing is close to a, .
The Gi2(Q) has significant structure for 2 & ~Q~/kF & 3.
This refiects the existence of a low-lying inhomogeneous
excited state with a wave number in this range. As ex-
pected the Giz(Q) for electron-hole layers is negative,
implying an enhancement of the efFective interaction by
the attractive correlations. Also shown for comparison
is the local field G(q) for a single layer. In contrast
with Giz(Q) the important structure in G(q) appears
at smaller Q values, for ~Q~/k~ & 2. This refiects the
fact that for a single layer the local field is determined
by short-range correlations.

FIG. 6. Local fields for r, = 20 at layer spacing a =
1.0la„where a, is the critical spacing. The broken line is
the interlayer local field for the electron-hole system and the
chain line the interlayer field for the electron-electron system.
The local field for a single layer deduced (Ref. 17) from data
in Ref. 23 is shown as a solid line.

For both electron-hole and electron-electron coupled
layer systems we find that the behavior of static corre-
lations is quite difFerent for pairs of carriers within the
same layer and for pairs from opposite layers. This is
basically because carriers are &ee to move only paral-
lel to the layers and because in the absence of tunneling
exchange only acts within layers.

For electron-hole layers the interlayer correlations tend
to make the liquid marginally more susceptible to the in-
stabilities. When an instability does occur the interlayer
correlations appear to significantly favor the Wigner crys-
tal state over a charge density wave state. By contrast for
electron-electron layers the interlayer correlations make
the liquid slightly more resistant to instabilities and the
charge density wave state is the one which is favored.

The formalism we have used applies to liquid phases
only and it is difficult to draw firm conclusions about
the nature of the inhomogeneous ground states associ-
ated with points of instability in the liquid. It would
be interesting to learn more about these inhomogeneous
phases and also to resolve the issue of whether a first-
order phase transition might preempt some of the insta-
bilities. A density functional approach might be used for
this purpose. It would be useful to have results from
ground state numerical simulations analogous to Ref. 23
for the single layer.
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