
VOLUME 67, NUMBER 2 PH YSICAL REVIEW LETTERS 8 JUL+ 1991

Enhancement of Wigner Crystallization in Multiple-Quantum-Well Structures
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We show that the density for Wigner crystallization to occur for the two-dimensional electron liquid in

zero magnetic field can be increased in suitable multiple-quantum-well structures. Data from Monte
Carlo calculations are used to determine the properties of each layer in isolation, and the layers interact
through Coulomb forces. With this mechanism the maximum solidification density can be raised by as

much as a factor of 3. At higher densities, charge-density-wave ground states can occur.

PACS numbers: 73.20.0x

The Wigner-crystal state of a pure electron system is

expected to occur only at very low densities. This restric-
tion comes from the competition between the kinetic and
potential energies of the system. The kinetic-energy cost
scales as the inverse square of the lattice constant, and
this only becomes insignificant compared to the potential
energy for very large values of the lattice constant, that
is, for very low densities. Monte Carlo numerical simula-
tions for the ground state of the electron system predict
that at zero temperature the signer phase transition
from liquid to solid occurs at r, —110 for a three-
dimensional system [1] and r, —37 in two dimensions [2].
This has made observation of the quantum Wigner-
crystallization phenomena very di%cult, with a major
obstacle being the tendency toward disorder-induced elec-
tron localization at densities much higher than those as-
sociated with crystallization. There is increasing experi-
mental evidence that Wigner crystalization occurs in thin
electron layers in very high magnetic fields [3]. In this
case the quantized cyclotron orbit provides a localization
scale for the electrons, which reduces the energy cost of
localizing the electrons on lattice sites.

We propose here that the Wigner transition can be
shifted to much higher electron densities in a multiple-
quantum-well structure of parallel electron layers
separated by potential barriers. Let us first consider two
parallel layers of electrons each with the same layer den-

sity less than the Wigner-crystal transition density
(r, )37). In the ground state the electrons in both layers
will be in the Wigner-crystal ground state. There has
been recent interest in the effect of electron correlations

between quantum wells on highly correlated many-body
states within coupled electron layers [4], but here we are
going to assume that the perpendicular separation be-
tween layers is su%ciently large that there is negligible

hopping of electrons between the layers. Because of the
Coulomb interaction between layers, the two Wigner lat-
tices will be shifted relative to each other by half a lattice
constant. Thus a lattice site in one layer will lie directly

above the midpoint between two sites in the other layer.
Now suppose the electron density in the layers is in-
creased. Because of the additional potential gain arising
from the interaction between layers [5], the electrons will

not immediately liquify when density exceeds the transi-
tion density for a single layer (r, =37), and for suf-
ficiently small values of the perpendicular separation be-
tween the layers, this coupled crystal ground state can
persist to densities significantly higher than r, =37.

If we continue to increase the density, the kinetic-

energy cost of localizing the electrons on a length scale of
the interparticle spacing will finally become too large for
the potential-energy gain from the interlayer interaction
to overcome. However, even then it can sti11 be energeti-
cally favorable at densities higher than this point for
there to exist a density modulation in the ground state
with wave number ~q~ & 2kF. Such charge-density waves

have been observed in many one-dimensional conductors
(for a recent review see, for example, Ref. [6]), and in

layered compounds, and there have even been suggestions
that they may form the ground state of some simple bulk
metals [7]. We believe this is a first suggestion that
charge-density waves can be studied in multiple quantum
wells. As a general requirement for the existence of a
charge-density-wave ground state, we need to have a
compensating polarizable background medium. In our

system, each layer could act as the polarizing background
medium for the other.

Our argument can be quantified by calculating the
static response function for a system consisting of N even-

ly spaced, parallel layers of electrons, and by showing
that it diverges for wave vectors equal to the reciprocal-
lattice constant of the Wigner crystal, q=G, or for a
smaller wave vector (~q~ ( 2kF) in the case of a charge-
density-wave transition.

Within linear-response theory the total potential acting
on electrons in a particular layer I consists of the external
potential &t'"'(q, to) plus the interaction induced by
changes in electron density in other layers. The induced
electron density in the lth layer Snt (q, ta) is thus

Bn((q, to) =g(q, co) et'"'(q, to) —g Vt((q)8n((q, to), (1)
I'A I

where g(q, co) is the response function for a single isolat-
ed layer, and Vtt (q) is the interaction between electrons
in the layers I and I'. %"e assume that there is negligible
tunneling between layers, so that we can take the interac-
tion between electrons in different layers to be the bare
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z(q, ~)
—V(((q) 8((+ V(( (q) 8n( (q, a)i

=@('"'(q,n() . (3)

In this equation, the quantity in the square brackets is the
inverse of the total response function matrix, g(P'(q, cp),
for the multilayer system.

Equation (3) implies that a system which has a uni-

form density within each layer will be unstable to a phase
transition into a state with a nonuniform density distribu-
tion if the determinant for co =0 vanishes:

Coulomb interaction for the intrinsic semiconductor with
dielectric constant eo.

V(((q) =v~„dz dz'e ' ' )g(z —la)
~

~g(z' —l'a)
~

(2)
where U„=2(re /qep. The envelope wave function per-
pendicular to the layer, g(z —la), is assumed to be the
same for all electrons, that is, only the lowest subband is

occupied.
Equation (I ) can be written in the form
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transition. We follow the procedure introduced in Ref.
[8]. We determine the static response function for the
single layer using the Monte Carlo numerical simulation
data for the ground state of the pure two-dimensional
electron liquid [2]. First g(q, co) is written in the form
[9]

z(q, ~) = gp(q, ru)

I+ V(q) [I —G(q)]q, (q, ~) '

det
1

V(((q) ~((+ V(((q)
z(q)

(4)

z q( )
I ~ V„(q)q(q)

(5)

Here g(q)—:g(q, n(=0). When this condition is satisfied,
Eq. (3) has a nontrivial static solution in the absence of
the external potential.

In the special case of two layers, when the matrix
g(P'(q) is diagonalized its elements are
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The plus label corresponds to the situation where density
modulations parallel to the layers have the same phase in

the two layers [Sni(q) =Dna(q)], and the minus to the
case where they are (r out of phase [Sn 1 (q) = —Dna(q)].

We see that the denominator in Eq. (5) can vanish,
causing the total response function g'g(q) to diverge,
even when the response function for the single layer,
g(q), is finite. Since V(2(q) and g(q) are both non-

negative, it is g'—"(q) which will diverge. If the density
within each layer is close to the Wigner-crystal transition
point, then g(q) will be very large for values of q near the
reciprocal-lattice vector G of the crystal. In this case
even small values of the interlayer potential may be
sufficient to cause g'—"(q) to diverge. As we increase the
density within both layers we will move away from the
transition point and the peak in g(q) will become less
pronounced. In this case V~2(q) will need to be larger for
the denominator of Eq. (5) to vanish. This can be ac-
complished if the perpendicular spacing between the lay-
ers is decreased.

We now specify the response function for a single iso-
lated layer. From the above argument it is vital that
g(q) should accurately reproduce the behavior of the
electron liquid in the vicinity of the Wigner-crystal phase
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FIG. 1. Static response function g'—"(q) for two layers. (a)
Plots for density r, =25 and three diAerent layer spacings,
a/a(( =14.90, 14.75, 14.71 (solid, dashed, and dot-dashed lines,
respectively). Transition to the Wigner crystal occurs at critical
layer spacing a, /a(( =14.7, with wave number q, =2.5kr. (b)
Similar to (a), but with r, =20 and a/a(( =9.65, 9.57, and 9.55.
Transition to the Wigner crystal at a, /a(( =9.5, with q, =2.4kF.
(c) Similar to (a), but with r, =10 and a/a(( =3.26, 3.245, and
3.24. Transition to charge-density wave at a, /a(( =3.2, with

q, = I.8kF.
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TABLE I. Wigner-crystal critical wave number q, and critical layer spacing a, . f~o denotes the Monte Carlo [2] occupation num-
b«s f«r. =10, and fo the Fermi-Dirac occupation numbers. d is the layer thickness and N the number of layers.

[N =2, fio, d =a/}
q, /kF a, /as

[N=2, fo, d=aa}
q, lkF a, /as

[N =2, f~o, d =2ag}
q, /kF a, /ag

[N=~, fio, d=aa}
qc/kF a~/aa

25
20

2.5
2.4

14.7
9.5

2.5
2.4

18.2
1 1.9

2.5 14.6 2.5 19.2

where V(q)= Vo(q), and gp(q, cp) is the Lindhard func-
tion for the two-dimensional system [10) with the single-
particle occupation numbers n(p) taken for the interact-
ing electron liquid. The static local field factor G(q)
takes into account the static correlations between pairs of
electrons due to their mutual exchange and interaction.
Reference [2] gives the pair correlation function g(r) for
the ground state of the two-dimensional electron liquid
for a range of densities down to the Wigner-
crystallization point. g(r) is related by a Fourier trans-
formation to the static structure factor S(q). This in
turn is related to Imp(q, cp) through the fluctuation-
dissipation theorem. By assuming the form for g(q, rp)
given by Eq. (6), we can thus use the g(r) data in Ref.
[2] to uniquely specify the local field factor G(q).

Equation {5) can be rewritten with the help of Eq. (6)
in the form

z'~'(q) = zp(q)
1+ [V(q) [1 —G(q)] + V, (q)}gp(q)

. (7)

We see that there is some cancellation between the
eft'ective potential within the layer, V(q) [1 —G(q)], and
potential between layers, V~&(q). It is this cancellation
which can lead both to the enhancement of the Wigner
crystallization and to the formation of a stable charge-
density-wave state. While the charge-density wave is not
very sensitive to the precise shape of G(q), for the
Wigner-crystal transition the local field G(q) must have
a maximum exceeding unity.

Using Eq. (7) we calculated g'—"(q) for two wells each
of thickness d=att. For a GaAs/A1GaAs system the
effective Bohr radius att =98 A. At each density we
varied the perpendicular spacing a between the layers to
see how the interlayer interactions affected g'—"(q). For
densities approaching the Wigner-crystal density for one
layer {r,=37) [2], the single-layer response function
g(q) diverges, causing the total response function g'—"(q)
[Eq. (5)l to diverge for arbitrary layer spacing. If we
consider a density higher than the critical density r, =37,
but smaller than r, =20, then g(q) is finite but with a

large peak at q, /kF=2. 5. This causes the total response
function to diverge for a finite layer spacing a, [Fig.
1(a)]. A Wigner transition is thus induced in this two-
layer system for planar densities considerably larger than
the critical density for one layer. The value of the critical
wave number q, for the Wigner-crystal transition should
be insensitive to parameters of the system since it is given
by the average spacing between electrons. On the other
hand, the critical layer spacing a, may weakly depend on
details of the layer structure and also on the approxima-
tions used (see discussion below).

For densities approaching r, =20 a second peak devel-
ops around q, /kF ~ 2.0 [Fig. 1(b)]. This wave number
corresponds to a density modulation on a scale larger
than the average interparticle distance, and we interpret
it as a precursor for a two-dimensional charge-density
wave in the plane of each layer. For r, =20 the Wigner-
crystal transition preempts any actual transition to a
charge-density-wave ground state, but when the density
increases there is a sharp crossover from the Wigner in-

stability to the charge-density-wave phase transition.
At larger density r, =10, only the peak corresponding

to the charge-density wave survives. The critical wave
number has now moved down to q, =1.8kF [Fig. 1(c)].
By r, =5 the charge-density-wave instability occurs for
a/an't =2. In this case appreciable tunneling between lay-
ers would be expected to occur [4], an effect which we
have neglected in this calculation.

We turn now to a discussion of the inAuence on our re-
sults of the electron occupation numbers n(p), the width
of the layers d, and the number of the layers N. In
Tables I and II we compare results for the Wigner crystal
and the charge-density wave for the occupation numbers
n(p) taken from Ref. [2] for r, =10, and for n(p) set
equal to the Fermi-Dirac step-function distribution (f]p

and fp, respectively). We also compare results for two
values of the layer thickness (d=aa and 2az), and for
two layers and an infinite superlattice (N =2 and ~).

(i) Occupation numbers Reference [21.—gives results
for the occupation numbers n (p) for the interacting two-

TABLE II. Charge-density-wave critical wave number q, and critical layer spacing a, .

[N=2, fto, d=as}
q /kF a /a f

[N=2, fo, d=as}
q, /kF a,/as

[N =2, f~o, d =2as }
q./kF a,/aa

[N =~, fio, d =as }
q, lkF a~/as

20
10 1.8 3.2 2.0 4.7

2.0
1.7

9.6
3.4

2.0
1.5

13.5
5. 1
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dimensional electron liquid, but only for densities down to
r, =10. We found that the form of n(p) is not critical to
our results, and for the results in Fig. 1 we used n(p) tak-
en from Ref. [2] for r, =10. We obtain broadly similar
results for the Fermi-Dirac distribution function (com-
pare columns IN =2, f~p, d =att J and [N =2, fp, d =att J
in the tables). In this case, however, the singularity at
q =2kF in gp(q) is stronger because of the larger discon-
tinuity in n(p) at p=kF. This shifts the critical wave
vector for the charge-density wave from 1.8kF to 2.0kF.

(ii) Width of the layers In.—GaAs/A16aAs systems
the characteristic barrier height is 0.3 eV. This sets up a
lower limit of around 100 A on the spatial extent of the
envelope function ('(z). We found that the results were
insensitive to the detailed shape of the potential well, and
so for our results in Fig. 1 we confined g(z) by infinite
potential walls at z = + d/2, with d =att. A larger value
of d marginally favors the charge-density wave, pushing
down the crossover to Wigner crystallization to slightly
lower densities. In the tables we compare results for
[N=2, f~p, d=2aef with P'=2, f~p, d=a@.

(t'ii) Number of layers To che.—ck the sensitivity of the
results to the number of electron layers, N, we consider
the case of an infinite number of layers separated by a.
In this case we can solve Eq. (1) by introducing a discrete
Fourier transform in the direction perpendicular to the
layer, obtaining for the static response function of the
system

@tot(q k ) z q( )
1+ l&(q, k) —V(q)]g(q) '

where k is the quasimomentum perpendicular to the su-
perlattice layers, and

V(q, k) =pe w(l I')ay&&, (q)—
I

g'"(q, k =x/a) for the superlattice corresponds to g'"(q)
for two layers, in the sense that the modulated density
distributions on adjacent layers are in both cases n out of
phase. It is straightforward to show that g"'(q, k) di-
verges most readily for k =tr/a. The tables show that for
two layers, N=2, the crossover to the Wigner crystal
occurs at a slightly higher density than for the infinite su-

perlattice (N=~).
We conclude that the behavior of the system is critical-

ly dependent only on the planar electron density and the
spacing between the layers, and not on the form of the
single-particle distribution function n(p), the layer thick-
ness, or the number of layers.

In summary, we have shown that in multiple electron
layers, the Coulomb interaction between layers can cause
the Wigner-crystal phase transition to occur at a factor of
3 higher planar density compared with the transition den-
sity for a single isolated layer. The transition density de-
pends sensitively on the perpendicular spacing between
the layers, but not on the number of layers. Combining
this mechanism with other experimental tuning tech-
niques may make the Wigner crystal in zero magnetic
field more experimentally accessible than previously
suspected. We have also shown that the same mecha-
nism, when operating at higher planar densities, can pro-
duce charge-density-wave ground states.
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