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A supersolid, a counterintuitive quantum state in which a rigid lattice of particles flows without
resistance, has to date not been unambiguously realized. Here we reveal a supersolid ground state of
excitons in a double-layer semiconductor heterostructure over a wide range of layer separations outside the
focus of recent experiments. This supersolid conforms to the original Chester supersolid with one exciton
per supersolid site, as distinct from the alternative version reported in cold-atom systems of a periodic
density modulation or clustering of the superfluid. We provide the phase diagram augmented by the
supersolid. This new phase appears at layer separations much smaller than the predicted exciton normal
solid, and it persists up to a solid-solid transition where the quantum phase coherence collapses. The ranges
of layer separations and exciton densities in our phase diagram are well within reach of the current
experimental capabilities.
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The existence of supersolid phases has attracted interest
for a long time, as it is intriguing and rather counterintuitive
to attempt to visualize particles flowing without resistance
while they form a rigid lattice [1]. In this exotic phase,
spatial off-diagonal long-range order and periodic solid
order coexist, spontaneously breaking particle conservation
and continuous translational invariance [2]. Chester [3]
originally proposed a supersolid ground state of 4He, with a
single atom localized at each lattice site of the 4He crystal.
There have been some indications of this phase in 4He in
torsional-oscillator experiments from nonclassical rota-
tional inertia [4], but it appears that condensate fractions
will be disappointingly tiny [5].
Alternative approaches to forming a supersolid have

involved quantum gases of cold atoms in optical latti-
ces [6], with recent reports of observations of supersolid
phases [7–10], and ultracold dipolar excitons, with reports
of a macroscopically ordered exciton state [11,12].
However one must distinguish these periodic density-
modulated or clustered condensates, with the Chester
concept of supersolidity where simultaneously within
the macroscopic quantum condensate, there is a single
particle localized on each lattice site by strong interparticle
repulsion, in analogy with 4He.
Here we show that excitons in a semiconductor hetero-

structure can form a supersolid of the Chester type, with a
single exciton at each site of the supersolid lattice without

vacancies. The heterostructure consists of parallel p-doped
and n-doped conducting layers. The electrons and holes are
spatially confined in their layers by an insulating barrier of
thickness d and dielectric constant ϵ. The equal carrier
densities ρ can be tuned by top and bottom metal gates.
When the average separation between carriers in each layer
is much larger than d, the electrons and holes will form
bound excitoniclike states aligned perpendicular to the
layers. Unlike cold atoms, solidification in this system is
driven purely by the repulsion between excitons, the
strength of which is tunable by d, ρ, and ϵ. We seek
supersolidity at low densities and large layer separations
where the exciton-exciton repulsion is strong.
This requirement is realizable in a variety of existing

semiconductor systems that are the subject of intense
experimental interest due to the accumulating evidence
that they support electron-hole superfluidity and Bose-
Einstein condensation, such as double monolayer tran-
sition metal dichalcogenides (TMD) [13,14], Si/Ge
heterojunctions [15], double bilayer graphene [16,17],
and double quantum wells in III-V semiconductor het-
erostructures [18,19]. Much effort in these systems has
focused on achieving very small layer separations so the
exciton binding energy is large and the exciton-exciton
interaction is weak. In contrast, our supersolid forms at
larger interlayer spacing, which is more experimentally
accessible.
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We determine the zero-temperature phase diagram as a
function of the system parameters, the layer separation d,
and the density ρ with characteristic length r0 ¼ 1=

ffiffiffiffiffiffi

πρ
p

.
The Hamiltonian for the electron-hole pairs is

H ¼
X

N

i¼1

�

−
ℏ2

2MX

�

∇2
i þ

X

N

i<j¼1

VXXðjri − rjjÞ: ð1Þ

The index i labels the N exciton pairs of mass MX at
positions ri parallel to the layers. For convenience, we take
equal electron and hole masses, m�

e ¼ m�
h. The interaction

VXXðrÞ between two exciton pairs,

VXXðrÞ ¼
1

4πϵ

e2d2

rðr2 þ d2Þ ; ð2Þ

contains the four Coulomb interactions acting between the
electrons and holes forming the pairs.
Next we introduce variational functions for the

many-particle states. To determine the ground state, we
minimize the energy for (i) the order parameter of the
superfluid phase, (ii) the wave function of the exciton
normal solid, and (iii) the order parameter of the exciton
supersolid.
(i) The BEC order parameter of the superfluid is [20],

hΦ̂†
sfðrÞi ¼ ΦsfðrÞ ¼

ffiffiffi

ρ
p

; ð3Þ

normalized to
R

d2rj ffiffiffi

ρ
p j2 ¼ N. Φ̂†

sfðrÞ creates an exciton-
like boson at position r. We can use the order parameter for
the BEC regime because screening suppresses the super-
fluidity at high density well before it enters the BCS regime
[16]. (ii) For the exciton normal solid, the variational wave
function is taken as a product of normalized Gaussians,
each centered on a different lattice site ai of the exciton
solid

Φnsðr1;…; rNÞ ¼
Y

N

i¼1

1
ffiffiffi

π
p

σns
e−ðri−aiÞ2=2σ2ns ; ð4Þ

with variational parameter σns. The N sites faig, equal to
the number of excitons, form a triangular lattice [21] with
lattice constant a determined by the exciton density,
ρ ¼ 2=ð ffiffiffi

3
p

a2Þ. For a stable solid, σns ≪ a. (iii) For the
exciton supersolid we choose a form for the variational
BEC order parameter ΦssðrÞ [22] that corresponds to
exactly one exciton per supersolid site, and contains phase
coherence on the macroscopic scale,

hΦ̂†
ssðrÞi ¼ ΦssðrÞ ¼

ffiffiffiffiffiffi

ρsf
p þ ffiffiffiffiffiffi

ρss
p X

N

i¼0

e−ðr−aiÞ2=2σ2ss : ð5Þ

Equation (5) represents a phase coherent state as it is
evident that the corresponding one-body density matrix,

hΦ̂†
ssðrÞΦ̂ssðr0Þi ¼N

�

ffiffiffiffiffiffi

ρsf
p þ ffiffiffiffiffiffi

ρss
p X

i

e−ðr−aiÞ2=2σ2ss
�

×

�

ffiffiffiffiffiffi

ρsf
p þ ffiffiffiffiffiffi

ρss
p X

j

e−ðr0−ajÞ2=2σ2ss
�

; ð6Þ

does not vanish when jr − r0j → ∞, and so has off-diagonal
long-range order (ODLRO) [23]. At the same time, ΦssðrÞ
and Φnsðr1;…; rNÞ share identical diagonal long-
range order from the symmetry of the triangular lattice
faig [24–26].
The normalization of the supersolid order parameter,

R

d2rjΦssðrÞj2 ¼ N, ensures that there is only one exciton
per supersolid site. Thus it is not a density wave. There are
two independent variational parameters: the localization
parameter σss, and the spatially homogeneous background
component ρsf . The parameter ρss is fixed by the
normalization.
A stable supersolid requires 0 < ρsf < ρ. When ρsf ¼ 0,

ΦssðrÞ cannot be lower in energy than Φnsðr1;…; rNÞ,
because the ODLRO in ΦssðrÞ associated with the addi-
tional overlaps of the Gaussians pushes up the exciton-
exciton interaction energy [22]. The other limit, ρsf ¼ ρ,
gives ρss ¼ 0, so ΦssðrÞ reverts to ΦsfðrÞ for the superfluid.
We calculate the energies hHi for the three phases with

the wave functions given by Eqs. (3)–(5). To take into
account the short range two-body correlations that are
expected to be strong in the low-density region where we
work, in evaluating the expectation value hVXXi of the
interaction we set Φ†ðrÞΦ†ðr0ÞVXXðr − r0ÞΦðrÞΦðr0Þ ¼ 0
when jr − r0j < Rc. This takes into account the vanishing
of the pair correlation function at small r for low den-
sities [27]. We determine Rc by matching our results with
the position of the exciton superfluid to normal-
solid transition obtained from quantum Monte Carlo
(QMC) [24,25]. The resulting value Rc ∼ 0.9r0 is consis-
tent with the short-range correlation length scales deter-
mined for repulsive dipolar bosons [26]. The short range
two-body correlations for the supersolid should be similar
to the normal solid, so we use this Rc throughout. We use
the effective Bohr radius, aB ¼ ℏ2ϵ=e2m�

e, as a length
scale, and effective mRydberg (mRy�) for energies. In
double TMD monolayers, typically aB ∼ 0.6 nm and
mRy� ∼ 0.2 meV.
Figure 1 compares the supersolid energy Ess (solid lines)

with the superfluid energy Esf (dashed lines), for
layer separations d at a fixed density corresponding to
r0 ¼ 30aB. Ess is shown as a function of the two variational
parameters for the supersolid, ρsf=ρ and σss=a. We recall
that, by definition, Ess ¼ Esf when ρsf=ρ ¼ 1.
For the smallest layer separation shown, d ¼ 5aB,

the minimum in Ess as a function of σss increases
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monotonically as ρsf=ρ decreases from 1 to 0. The
monotonic increase implies that the superfluid energy
forms a lower bound on the exciton supersolid energy.

So for d ¼ 5aB, the supersolid is not the ground state. In
contrast, for a larger d ¼ 20aB, the minimum in Ess as a
function of σss first decreases as ρsf decreases from 1. It
drops below Esf, reaching a lowest value at ρsf=ρ ¼ 0.6.
Thus, the exciton supersolid is more stable than the
superfluid for d ¼ 20aB. As d is further increased,
this minimum in Ess reaches a lowest value at smaller
values of ρsf=ρ. By d ¼ 25aB, the minimum is at
ρsf=ρ ¼ 0.1, and by d ¼ 30aB it decreases monotonically.
Again, for these cases the supersolid is more stable than the
superfluid.
Figure 2 shows for the same density as Fig. 1, the

energies of the exciton superfluid Esf , supersolid Ess, and
normal solid Ens phases. The dependence of Ens on σ ¼ σns
and Ess on σ ¼ σss is plotted. Each Ess curve uses the value
of ρsf=ρ yielding the lowest energy (Fig. 1). For d ¼ 5aB,
the minimum of Ens lies above Esf , so the superfluid is the
ground state. By d ¼ 20aB, the minimum of Ess has
dropped below Esf and it is still below the minimum of
Ens, so the supersolid is the ground state. Ens finally
touches Esf at d ≃ 22aB (Fig. 2(c)), matching the position
in phase space of the exciton liquid to normal-solid
transition predicted by QMC in Ref. [24]. However since
for this d the supersolid phase is still the ground state, it
preempts this transition. Only when the layer separation is
increased to d ¼ 30aB, does the minimum of Ens drop
below Ess. This signals an intriguing supersolid to normal-
solid transition, in which the ground-state crystal structure
is unchanged but the quantum phase coherence collapses.
We note that the energies around this density and layer
separation, are consistent with QMC calculations [28].
It is interesting to compare in Fig. 2, the dependence of

σ=a at the minima of Ens and Ess on the layer spacing. As d
increases, the repulsive interaction [Eq. (2)] becomes
stronger than the kinetic energy, and the particles should
become more localized on their lattice sites, corresponding
to a decreasing σ=a. This is clearly visible in the minimum
of the normal solid. In contrast for the supersolid, the
localization degree σ=a remains notably little changed over
this range of d.
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FIG. 2. Energies of the superfluid (sf), exciton supersolid (ss), and exciton normal solid (ns) phases, as labeled, for different layer
separations d. Density fixed at r0 ¼ 30aB. The dependence of Ess and Ens on the localization variational parameter, σ ¼ σss or σ ¼ σns,
is shown. Each Ess curve uses the value of ρsf=ρ yielding the lowest energy.
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FIG. 1. Exciton supersolid energy Ess for layer separations d as
indicated for a fixed density at r0 ¼ 30aB. Dashed line shows for
reference the superfluid energy Esf. Left panels: Ess as a function
of the localization parameter σss=a, for fixed values of the
background component ρsf=ρ as labeled. Right panels: minimum
in σss of Ess (cf. left panels), plotted as a function of the
background component ρsf=ρ. The dots highlight the absolute
minimum of Ess.
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Figure 3(a) shows that for the supersolid it is ρsf=ρ that
changes dramatically with d. The figure plots ρsf=ρ for the
lowest Ess as a function of d, for the same density as Fig. 1.
The ground states (shaded areas) are extracted from
Fig. 3(b), which shows the minima of the energies of
the three phases. The two energy crossings, corresponding
to the superfluid-supersolid and supersolid-normal solid
transitions, are indicated by the dotted lines. For small d,
ρsf=ρ ¼ 1 and the superfluid is the ground state. For
intermediate values of d, ρsf=ρ decreases, but before it
reaches zero, there is the transition to the normal solid
ground state, with its minimum energy dropping below the
minimum supersolid energy. We find that for all densities,
the supersolid phase is only stable relative to the normal
solid when ρsf=ρ≳ 0.25, confirming that due to the
ODLRO, a stable supersolid only exists for nonzero
ρsf=ρ. In other words, a substantial background component
in the supersolid order parameter is necessary to stabilize
a Chester-type supersolid.
Condensation in quantum crystals can occur if there

exists an appreciable probability of exchange of particles
between adjacent sites [1]. This is only possible when there
is an overlap of connected wave functions [1,5,29]. In a
conventional solid with disconnected wave functions at
each lattice site, condensation cannot occur. The exchange
can be provided by the presence of defects in the cry-
stal [30,31], but here it is the spatially homogeneous

background component in the order parameter [Eq. (5)]
that provides the necessary overlap.
Figure 4 shows the phase diagram. The energies driving

the phases are the electron-hole attraction between layers
Veh ¼ −e2=ð4πϵdÞ, the repulsion between charges within
each layer Vee ¼ Vhh ¼ e2=ð4πϵrÞ, the exciton-exciton
repulsion VXX [Eq. (2)], and the Fermi energy EF ¼
ℏ2=ð2m�

er20Þ [32].
The dashed line d ¼ r0 divides the phase diagram into a

lower region where the average interlayer attraction hVehi is
the most important, and an upper region where the average
intralayer repulsions hVeei ¼ hVhhi are the most important.
For d ≪ r0, due to the electron-hole attraction Veh,
the exciton-exciton repulsion is dipolar, VXXðrÞ ¼
e2d2=ð4πϵr3Þ. For d ≫ r0, the effect of Veh is negligible
and the exciton-exciton repulsion becomes Coulombic,
VXXðrÞ ¼ 2e2=ð4πϵrÞ.
The phase space region for small separations d and

large r0 where the ground state is superfluid (green area),
has been intensively studied theoretically and experimentally
[14,16,17,33]. If r0 is decreased, Veh=EF ∼ r20=ðdaBÞ will
decrease, until the superfluid gap generated by Veh drops
below EF. At this point, the strong screening suppresses the
superfluid gap so that at Veh=EF ≃ 17 the condensate
collapses and there is a transition to the normal-state liquid
[33] (green line). Note that the condensate collapse closely
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follows the Mott exciton dissociation line determined by
Ref. [34] for small d=aB.
At larger d, there is the new supersolid phase occupying

a large region of phase space (red area), an intermediate
phase lying between the superfluid and normal-solid phases
(see also Ref. [35]). The supersolid transition occurs much
earlier than the liquid to normal-solid transition predicted at
VXX=EF ¼ d2=ðr0aBÞ ≃ 17 [24,25] (dotted line). The
appearance of the supersolid well below the d predicted
for the normal solid is due to the presence of ρsf > 0 in the
supersolid order parameter that stabilizes the supersolid
phase. This phase persists for VXX=EF > 17, until there is
a transition from supersolid to the normal solid (blue
area). Further increasing d, we cross d ¼ r0 where VXX
becomes Coulombic. Here a low-density bilayer
Wigner crystal ground state has been predicted [28,36]
(yellow area).
We now turn to the melting of the solid phases at high

densities. The melting of the bilayer Wigner crystal was
determined in Ref. [28] (orange line). As for the exciton
solids, above d ¼ r0 a Coulombic-like VXXðrÞ cannot
support a solid at such high densities. In this way, the
exciton normal-solid melting line is approximately at
d ¼ r0 [25] (blue line).
For the supersolid phase there is a second melting

mechanism. If the supersolid quantum phase coherence
collapses at a d value for which VXX=EF < 17, then the
exciton repulsion will not be strong enough to support a
normal solid, and so it will melt. The mechanism for this
phase coherence collapse is expected to be the same as for
the superfluid, that is, a strong increase in the screening.
Therefore, we extend the calculation of the superfluid
condensate collapse to approximately determine the col-
lapse of the supersolid quantum phase coherence and so the
supersolid melting (red line). The approximation is justified
both by the resulting supersolid melting line lying close to
d ¼ r0, and also because we find the background compo-
nent ρsf=ρ in the supersolid is large there.
We note there is a triple point at the intersection of the

supersolid melting, the supersolid to normal-solid transi-
tion, and the normal-solid melting. The ever present
disorder in an experiment will spread the triple point
over an area of phase space of coexisting supersolid,
normal solid, and normal liquid domains, with exciting
physics stemming from the diverse and exotic interfaces
separating these domains. A fascinating possibility would
be Josephson tunneling between supersolid puddles
embedded in a normal-state background.
The supersolid melting temperature is determined by the

Berezinskii-Kosterlitz-Thouless transition temperature
TBKT [37]. Reference [25] shows TBKT for the superfluid
transition and the normal solid melting to be of the order of
a few mRy�. We expect the supersolid melting temperature
to be of the same order, corresponding in double TMD
monolayers to ∼2 K.

In conclusion, the supersolid ground state of excitons
that we are predicting is robust and extends over a wide area
of the equilibrium phase diagram. Since there is precisely
one exciton occupying each supersolid site, our supersolid
is of the Chester type and fundamentally differs from
proposals of supersolids that are superfluids with periodic
clustering [31] or periodic density modulation resembling
density waves [38].
Intriguingly, we find that a spatially homogeneous

background component in the supersolid order parameter
is essential to stabilize the Chester-type supersolid, in the
absence of other stabilizing factors like vacancies [39] or
clustering around the lattice sites [31]. By changing the
length of the exciton dipole moment (layer separation)
relative to the exciton spacing (density), the exciton-exciton
interactions can be tuned to stabilize the superfluid, super-
solid, or normal solid. The necessary ranges of densities,
layer separations, and dielectric constants are readily
accessible experimentally and controllable in semiconduc-
tor heterostructures. In addition, our augmented phase
diagram offers a rich selection of novel phenomena in
the vicinity of the triple point, the solid-solid transition
associated with the loss of quantum phase coherence, the
supersolid melting coinciding with the condensate collapse,
etc., all worthy of further investigation.
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